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Abstract. Bose-Einstein condensation (BEC) in a atomic cesium gas prepared in a “low field seeker”
Zeeman sublevel and confined in a magnetic trap has been thwarted by a high cross-section of inelastic
spin-flip collisions. A recent experiment [1] succeeded in reaching BEC for cesium atoms using all optical
methods and tuning the scattering length. We will discuss a hybrid magnetic and optical trap for cesium
atoms in the true hyperfine ground state, the “high field seeker” Zeeman sublevel, F = mF = 3. Although
this trap allows only one-dimensional (1D) evaporative cooling, we show that a route towards BEC with
such a trap should be possible. We present simulations of 1D evaporative cooling, which shows that a high
phase space density (PSD) of 0.1 could be reached in less than 10 seconds.

PACS. 03.75.Hh Static properties of condensates; thermodynamical, statistical and structural properties
– 05.30.Jp Boson systems – 32.80.Pj Optical cooling of atoms; trapping

1 Introduction

The usual route for Bose-Einstein condensation (BEC) in
atomic vapours is to use non-dissipative magnetic traps
coupled with the powerful technique of radio-frequency
induced evaporative cooling, which increases the phase
space density to beyond the BEC transition. Using this
technique, BEC has been demonstrated for several alkali
atoms [2–5]. With this approach in the case of the cesium
atom, attempts to reach the BEC transition have failed.
The reason for this is the large cross-section for inelas-
tic collisions leading to the depolarization of the atoms in
the trap. In order to cool, the forced evaporative method
has to be coupled to a fast thermalization of the atomic
sample through elastic collisions. Furthermore, the elastic
collision cross-section must be significantly larger than the
inelastic one. The elastic collisions guarantee cloud ther-
malization during the forced evaporation step, whereas the
inelastic collisions lead to unnecessary trap losses, without
decreasing the sample temperature. For both “low field
seeker” Zeeman sublevels, F = 4, mF = 4 and F = 3,
mF = −3, used in the previous experiments, the role of
inelastic collisions to prevent realization of BEC has been
clearly demonstrated [6–9]. Because of inelastic collisions,
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c Laboratoire Aimé Cotton is associated with University of

Paris-Sud.

the cesium atom can be considered on one hand as a “bad”
atom for cooling, but on the other hand as a very exciting
system for several interesting reasons, such as the forma-
tion of cold molecules [10]. Understanding the cold colli-
sion processes is one of the motivations to push further
the investigations for Cs BEC.

Despite these difficulties, a BEC of cesium atoms was
recently achieved by the team of Grimm [1]. In this ex-
periment, the way around the problem of inelastic colli-
sions was to consider the lowest Zeeman sublevel F = 3,
mF = 3. For trapping such a “high magnetic field seeker”
state the usual magnetic trapping schemes can not be ap-
plied since Maxwell’s equations do not allow the existence
of a magnetic field maximum in the vacuum (Wing’s the-
orem). In this set-up, the cesium atoms are so confined
by purely optical dipole forces provided by two crossed
high power CO2 laser beams. Furthermore a static homo-
geneous magnetic field is added for controlling the scatter-
ing length sign. More, this magnetic field allows to adjust
the cross-section value during the BEC route. Note that
the BEC approach in this experiment involves only optical
methods: the evaporative cooling is performed by lowering
the optical potential intensity.

A slightly different trap for cesium atoms in the same
F = 3, mF = 3 state is currently developed at labora-
toire Aimé Cotton. The aim of this paper is to discuss the
feasibility of BEC in such a set-up. The conservative trap
we consider consists in a vertical Nd:YAG laser beam per-
forming a 2D confinement combined to a magnetic field
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gradient, provided by a pair of bars in which a large cur-
rent is circulated, performing a vertical 1D confinement.
The evaporative cooling can be obtained by a microwave
frequency ramp to transfer the atoms from the trapped
state, F = 3, mF = 3, to a non trapped state F = 4,
mF = 4. Because the magnetic component of the trap-
ping force is mainly along the vertical axis, contrary to
BEC experiments on alkali atoms in magnetic traps, the
evaporative cooling is neither a 3D nor 2D process but
one-dimensional. This is expected to be less efficient, and
it is unclear whether the run-away regime toward BEC
can be achieved. The purpose of this article is to analyze
the possibility to reach BEC with such a 1D evaporative
cooling.

As demonstrated in the Grimm’s experiment, an inter-
esting feature provided by Cs atoms is the possibility of
tuning the magnitude, and changing the sign of the scat-
tering length associated with the Zeeman sublevel, F = 3,
mF = 3, by varying the magnetic field value. This pos-
sibility is due to the presence of a Feshbach resonance
which allows one to change the positive scattering length
in the range 0−1000a0 (where a0 is the Bohr radius) by
the addition of a magnetic field in the range of a few tens
of gauss [11]. In the set-up described here, the magnetic
configuration is designed in order to freely vary the field
value at the position of the trapped cloud without modi-
fication of either the trap frequency or the position of the
trap centre.

The paper is organized as follows. First, we describe
the principle, geometry and characteristics of the trap for
experimentally realistic parameters. Then, we numerically
investigate the efficiency of 1D evaporative cooling in such
a trap. The numerical model has been designed for sim-
ulating the collisional behaviour of cold trapped atoms
including realistic values of the scattering length. In spite
of the constraint of 1D evaporative cooling, the numerical
data give a reasonable time for approaching the BEC tran-
sition, opening the possibility of achieving BEC in such a
trap.

2 The trap

The design of the trap has mainly been imposed by ex-
perimental constraints. The non-dissipative trap shown in
Figure 1 is created by two components: a magnetic ap-
paratus which provides a vertical trapping force plus a
tunable field, and one, far red detuned, laser beam which
provides the horizontal trapping potential.

2.1 The magnetic field

In our set-up (Fig. 1), two different magnetic fields have
to be considered, as they play a different role in the ex-
periment. First, two horizontal parallel bars carrying op-
posite currents It produce an inhomogeneous magnetic
field

−→
B1(x, z) (with

−→
B1(x, z) = B1z(x, z)−→ez +B1x(x, z)−→ex),

the vertical gradient of which is equal to 30 G/cm at the
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Fig. 1. The trap configuration in the (xz) plane: 2d is the
distance between the two bars, zt is the trap height. The circles
represent a pair of conductors each of which carries a total

current It.
−−→
B1z(x, z) is the z-component of the magnetic field−→

B1(x, z) created by the conductors,
−→
B0 is the homogeneous and

constant magnetic field. In our experiment, 2d = 25 mm, we
have chosen It � 300 A, in order to get zt � 15 mm. To get
zt > 0 we need to have B0 < −B1z(0, zt).

trapping position z = zt in order to compensate for grav-
ity. Second, a pair of Helmholtz coils (not represented in
Fig. 1) with their axis along the vertical direction is used
to realize a large homogeneous static magnetic field

−→
B0,

which has two effects. First, as shown in Appendix A, it
enables a trapping position at z = zt > 0 (see Eqs. (A.6)).
Second, as was mentioned in the introduction, it allows
one to change the interactions between atoms by mod-
ifying the scattering length using Feshbach resonances.
Recent measurements of the radiative collision loss rate
carried out in the F = 3, mF = 3 sublevel [11,12] have
revealed the presence of a Feshbach resonance in the range
0–48 gauss and show that the scattering length a is neg-
ative in the 0–18 G region with a large amplitude at zero
field, and positive above 18 G, with a pole at 48 G. There-
fore, the condition that a > 0, required to be able to ob-
serve a large stable condensate [4] leads us to choose the
correct range of variation for

−→
B0 in order to produce a to-

tal magnetic field in the range of 18–100 G at the trapping
position.

In view of the magnetic configuration, the total mag-
netic field is of the form (see Appendix A, and equations
therein, for detail of the complete expression of

−→
B (x, z),

Eq. (A.1)):

−→
B (x, z) = [B0 + B1z(x, z)]−→ez + B1x(x, z)−→ex (1)

where
−−→
B1z(x, z) and

−→
B0 have an opposite direction (e.g.

Eq. (A.2)).
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Thus the magnetic potential experienced by an atom
VB(x, z) = gF µBmF |−→B (x, z)|, where gF is the Landé fac-
tor of the level (gF=3 = −1/4) and µB the Bohr magneton,
can be expressed along the z-axis as:

VB (0, z) = gF µBmF |B0 + B1z(0, z)|

= gF µBmF

∣∣∣∣B0 + Bw
1

1 + z2/d2

∣∣∣∣ (2)

where Bw = µ0It/πd represents B1(0, 0) and 2d is the
distance between the two bars.

This magnetic potential is superimposed on the gravi-
tational potential, Vg (z) = mgz with m being the cesium
atom mass, g the local gravitational field. The tunable
parameters of VB (i.e. B0 and Bw) are chosen in order
to get a minimum of the resulting potential Vvert(z) =
VB(0, z) + Vg(z) at z = zt > 0 and a total magnetic field
B ≡ B(0, zt) with an amplitude larger than 18 G at this
value of zt.

From expressions (Eqs. (A.10, A.4, A.5)) we can ob-
tain Bw(zt), the trap oscillation frequency νt(zt) and the
range for B0 in order to produce a total magnetic field
larger than 18 G at zt. One important feature of our mag-
netic set-up is that the trap position and the curvature
depend only on the choice of zt and therefore on the value
Bw(zt). They do not depend on the value of B0 which only
introduces a change of the total field and can modify the
depth of the potential ∆V (zt, B0) (see Eqs. (A.7, A.9)).
Consequently, by changing B0, we should be able to tune
the value of the scattering length without affecting either
the trapping position or the trapping frequency.

Figures 2a–2c show the variations of these parameters
for 2d = 25 mm and are used to determine their value
for the experiment. We have plotted Figure 2a Bw and
νt versus zt, and in Figure 2b B0 and ∆V versus zt and
B. Figure 2c shows the variation of the potential Vvert(z)
along the z-axis for zt = 15 mm corresponding to Bw =
97.2 G, νt = 4.75 Hz and for a set of B0 values (B0 =
−58,−78,−98 gauss corresponding respectively to B =
−18,−38,−58 gauss). In the following, we assume that the
trapping position is located at zt = 15 mm, with different
values of B in order to vary the scattering length.

2.2 The dipole trap

The optical part of the trap consists in one laser beam
propagating along the z-axis (as shown in Fig. 1) which
ensures a 2D horizontal confinement.

The dipole trap makes use of an intense far-off-
resonance red detuned laser beam. The interaction of such
a laser with the atoms consists mainly in a conservative
attractive optical dipole force, scaling as the beam inten-
sity and the inverse of the detuning between the laser
frequency and the atomic transition frequency. The dis-
sipative force, due to photon absorption, is negligible at
a large value of the laser detuning, since it scales as the
inverse of the square of the detuning. The resulting force
is then assumed to be conservative.

10 15 20 25 30 35 40 45 50
10

100

1000

 Bw  

B
w
 [

G
au

ss
]

zt [mm]

1

2

3

4

5

6

ν
t  [H

z]

 νt   

(a)

10 20 30 40 50
-10

-20

-30

-40

-50

-60

z
t
 [mm]

B
 [

G
au

ss
]

Potential depth (µΚ)
1200  -- 1400
 1000  -- 1200
  800  --  1000
  600  --  800
  400  --  600
  200  --  400
    0  --  200

-140
-130

-120

-110
-100

-100

-90,0

-80,0-70,0

-60,0

10 15 20 25 30 35 40 45 50
-10

-20

-30

-40

-50

-60

B0 [Gauss]

(b)

0 5 10 15 20 25 30
-1000

-500

0

500

1000

1500

2000

 
V

ve
rt
(z

) 
 [

µK
]

(c)

(b)

(a)

z [mm]
(c)

Fig. 2. (a) Bw (bold line) and νt versus zt for 2d = 25 mm
where Bw = µ0It/πd = B1(0, 0) represents the maximum of
the magnetic field (along the z-axis) created by the pair of bars
and reached at z = 0. For zt � 15 mm (dashed line), we find
Bw = 97.2 G and νt = 4.75 Hz. (b) The total magnetic field
B ≡ B(0, zt) at z = zt and the vertical potential ∆V (grey
scale) versus zt and versus B0 (bold line). For zt � 15 mm
and B0 = −80 G, we find B = −40 G, and ∆V = kB570 µK.
(c) The vertical potential Vvert(z) = VB (0, z)+Vg (z) along the
z-axis for B = B(0, zt) = −18 G (a), −38 G (b), −58 G (c).
The dashed line represents the trapping altitude zt � 15 mm.
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The dipole trap can be achieved with a high power far
detuned laser, for example a Nd:YAG or a CO2 laser. We
have chosen to perform the dipole trap by using a 15 W,
1064 nm Nd:YAG Gaussian laser beam. The frequency
detuning from the closest cesium transition at 894.6 nm
(D1-Line) is δ = 1.2× 107Γ , where Γ = 2π × 4.56 MHz is
the full width at half maximum (FWHM) of the 894.6 nm.
At this stage we neglect the spontaneous emission due to
the excitation by the Nd:YAG laser. This effect will be
discussed in the last part “Discussion and conclusion” of
this paper.

The beam size is chosen in order to match the usual
dimension of a MOT and to provide a sufficiently strong
confinement. The laser beam whose size is chosen to be
wxy = 220 µm (1/e2 beam radius) at the altitude z = zt,
creates a Gaussian potential with a depth Uxy = kB52 µK.
By taking the zero energy at (0, 0, zt), the dipole potential
can be expressed as1:

VD(x, y) � Uxy

(
1 − e

−2

(
x2+y2

w2
xy

))
. (3)

The dipole trap radial frequency in the vicinity of (0, 0,
zt) is:

ωxy

2π
=

1
πwxy

√
Uxy

m
. (4)

With the given experimental parameters the frequency
value is ωxy/2π = 82 Hz.

The total potential Vtot(x, y, z) = VB (x, z) + Vg (z) +
VD(x, y) has been plotted in Figure 3 in the vicinity of
the trap centre (0, 0, zt). As shown, the vertical laser beam
provides a tight horizontal confinement whereas the mag-
netic confinement along the vertical axis is weak.

2.3 Conditions of the evaporative cooling

The atomic sample is polarized and trapped in the
|F = 3, mF = 3〉 Zeeman sublevel, which allows the use of
radio-frequency induced evaporation. As a consequence of
the experimental configuration, such an evaporation can
only be one-dimensional as it can be only performed along
the z direction. It is known to be less efficient [13,14]. Such
a 1D process will be further studied in the next section.
Because the design of the trap allows a total magnetic field
larger than 18 G at the trapping position, the splitting
between adjacent hyperfine Zeeman levels within F = 3
manifold is greater than kB300 µK. Therefore, the popula-
tion of excited spin states via inelastic two-body spin-flip
transition is strictly forbidden at typical temperature for
atomic clouds loaded from a magneto-optical trap (MOT).

In our trap it is possible to use a microwave dipole
transition between the |F = 3, mF = 3〉 sublevel to the
|F = 4, mF = 4〉 sublevel. Indeed, on one hand the as-
sociated resonance transition is z dependent due to the

1 The Rayleigh distance of the laser beams equal to 14 cm
is large enough compared to the size of the atomic cloud, to
assume that the beam is “parallel” in the trapping area.
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Fig. 3. The total potential Vtot(x, y, z) = VB (x, z) + Vg (z) +
VD(x, y). (a) Vtot(x, 0, zt) versus x with zt = 15 mm. There is
a magnetic repulsion. The depth is around kB50 µK, ωx/2π �
80 Hz. (b) Vtot(0, y, zt) versus y. The depth is kB50 µK,
ωy/2π � 80 Hz. (c) Vtot(0, 0, z) versus z. The depth of the
optical potential is kB700 µK, ωz/2π � 4.5 Hz.

magnetic field gradient, and on the other hand, the
|F = 4, mF = 4〉 level is a “low field seeker” level and is
not trapped in the magnetic device at z = zt. Further-
more, atoms in this state are expelled from the z = zt

region and leave this region mainly along the z-axis be-
cause the potential is still attractive along the x- and
y-directions.

3 Quantitative analysis of 1D evaporative
cooling

In order to quantitatively evaluate the 1D evaporation ef-
ficiency as a function of the scattering length, we have
simulated the process using Bird’s method [15]. This
method, initially developed for molecular gas dynamics,
has successfully been used to simulate evaporation pro-
cesses [16,17] for BEC experiments.

In the dilute gas regime, particles move freely in the
trapping potential and collide only occasionally. The col-
lision duration is assumed to be very short in order to
separate the particle motion from the collision. For that,
we quantized the time into intervals ∆t (typically 100 µs)
which is larger than the collision duration and smaller
than the average time between two collisions. During ∆t,
the trajectory of each atom is determined by its motion
in the harmonic potential. Indeed, for temperatures con-
sidered here (typically below 10 µK) Figure 3 shows that
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Fig. 4. Evolution of the phase
space density (a) and the atom
number (b) versus the evapora-
tive time, for η = 8 and for a
set of scattering length a/a0 =
95, 126, 178, 252, 300, 520.

the harmonic approximation of the potential can be con-
sidered as correct. Therefore, we assume that the trap is
characterized by two frequencies: ωz/2π for the motion
along the z-axis and ωr/2π in the transverse plane (since
ωx and ωy are very similar in our trap). Therefore, the
atom indexed i is exactly described by a set of ampli-
tudes ai

x,y,z and a set of phases φi
x,y,z which give the atom

position and velocity. The position is given by:


xi(t)
yi(t)
zi(t)


 =




ai
x cos(ωrt + φi

x)
ai

y cos(ωrt + φi
y)

ai
z cos(ωzt + φi

z)


 . (5)

Knowledge of the position and velocity avoids the need
to solve the differential equations of the atom motion and
leads to an enormous saving of calculation time. The col-
lisions are assumed to be instantaneous. At every time
step ∆t we check whether the atoms collided or not. We
do not actually check the collision between all atoms be-
cause it is time consuming. The N atoms are classified
in an array of altitude and then we do the check process
only between neighbours in this array (typically 100 neigh-
bours). Thus the time of calculation scales as N ln(N) and
not N2. If a collision occurs, we consider the center of
mass referenced with respect to the two particles. In this
reference we randomly choose the angle between the fi-
nal relative speed vector −→vr

f and the initial relative speed
vector −→vr

i. We also assume that atoms collide only in the
s-wave regime so that the diffusion is isotropic. We also
consider only elastic collisions so that the magnitude of
the relative speed vector is preserved during the collision.

Using these features, we are able to simulate a few
thousand atoms trapped in an anisotropic potential. How-
ever, for calculation time duration reasons it is impos-
sible to simulate the dynamics of a few million atoms.
Bird’s method tackles this problem by considering “macro
atoms”. We simulate the dynamics of N = Nreal/q atoms
where Nreal is the real trapped atoms number and q a

power of 2 factor (we choose q = 1024). In order to main-
tain the dynamics of the gas we consider the macro atom
“q-time” bigger than the real one: the two body colli-
sional cross-section between macro atoms σ is taken to
be σ = qσreal. Each macro atom has the same dynamic
characteristics as q real atoms. One difficulty of Bird’s
method appears in the case of evaporative cooling, which
is that, during the evaporative process, the cloud looses
atoms. We may assume that 10000 atoms are sufficient to
represent our trapped gas but after losing 99% of them, it
is less reasonable to build a statistical model on 100 atoms.
In order to correct this problem, we use a trick from refer-
ence [8], which consists of refilling the trap after it has lost
half of its trapped atoms. This can be done by duplicating
the remaining atoms into clones having exactly the same
characteristics but located symmetrically with respect of
the centre of the trap (the speed is also taken symmet-
rical). The cross-section is then divided by a factor 2 in
order to maintain the dynamics.

In usual evaporation models, the potential is truncated
at an energy E = ηkBT where T is the temperature of the
trapped sample. However, in the set-up described herein,
the potential truncation is actually performed in one di-
mension along the z-axis at an altitude z = ±Zev. Thus in
our calculation we choose to define the evaporation surface
z = ±Zev by the following relation: mω2

zZ2
ev = ηkBTz,

where kBTz is the mean total energy for the atomic motion
along the z-axis. With this choice, we take into account
that the evaporation can be fast enough to prevent an
isotropic thermal equilibrium of the sample. Of course if
the thermalization rate is fast enough, one finds the usual
definition with Tz = T . During the evaporation process,
η is kept constant. Although it may not be the optimized
way, it gives a good indication of the cooling efficiency.

Figure 4 shows typical evaporation calculations, con-
sidering 107 initial atoms at a temperature of 5 µK with
s-wave scattering length a/a0 ranging from 95 to 520 and
η = 8. Each simulation was performed on a standard
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as a function of the evaporation constant η for a set scattering
length a/a0 = 126, 178, 219, 252, 300, 520.

personal computer (P4 2.4 GHz CPU running linux) dur-
ing typicaly 10 hours. Since our model is purely classi-
cal, the calculation is stopped when the phase-space den-
sity (PSD) reaches 0.1. Under these initial conditions,
a PSD equal to 0.1 can be achieved in less than 10 s
for a/a0 = 520, showing that despite the 1D evapora-
tion scheme, BEC could be reached within a reasonable
evaporation time.

Since the experimental set-ups on Cs offers the pos-
sibility of varying the cross-section, we studied the evap-
orative cooling efficiency for several values of a/a0. The
second parameter of interest is the truncation constant η.
The most relevant value derived from the numerical cal-
culation is the time t0.1 needed to reach a phase-space
density of 0.1. Figure 5 shows the dependence of t0.1 as
a function of η for various values of a/a0 in the range
126–520. This range of cross-section is accessible for ex-
perimentally realistic magnetic field values (20–30 G). As
expected, for a given value of η, the evaporative cooling
efficiency is better for large cross-section2: the evaporative
cooling process relies on the thermalization rate which it-
self depends on the value of the scattering length. The
variation with the truncation constant η can be described
in terms of two regimes. First, for large values (η > 8 in
the range of scattering length here-considered), the atom
losses are sufficiently slow to allow the total energy to
be uniformly distributed along the 3D. In that case, the
cooling rate varies like the loss-rate. The loss-rate is de-
creasing as η is increasing. On the other hand, one may
be concerned by the number of atoms remaining at the
end of the cooling sequence, then larger values of η allows
a selection of higher energy atoms to be evaporated from
the trap. The cooling rate is decreased but the cooling ef-
ficiency per evaporated atom is better. This is illustrated
by Figure 6 which shows the number of atoms remaining

2 However, if the cross-section becomes too large (typically
a/a0 � 1000), a new regime appears known as hydrodynamic
regime. In this regime, the evaporation efficiency decreases.
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Fig. 6. Number of atoms remaining when a phase space den-
sity of 0.1 is reached as a function of the scattering length and
for a set evaporation constant η > 7.

at each calculated point displayed in Figure 5. A differ-
ent regime takes place for small values of η (η < 7). In
that situation, the evaporation rate is so high that the
temperatures along the z-axis is much lower than along
the transverse plane Oxy. The evaporated atoms are lost
without cooling down all the degrees of freedom which is
strongly inefficient. Then not only the time for reaching
DEP = 0.1 increases rapidly but also the number of re-
maining atoms decreases dramatically (for η < 7). Finally,
it appears that the optimum value for η (in terms of ve-
locity) ranges between 7 and 8 and is slightly dependent
on a/a0. This result is close to the values usually used in
experimental condition.

4 Discussion and conclusion

In this paper, we have proposed a hybrid magnetic and
optical trap that confines high-field seeking states near a
maximum of magnetic field, and analyzed the trap to as-
sess its suitability to achieve BEC. The trap is not subject
to Majorana spin flip and therefore turns off the two par-
ticle inelastic processes that have prevented previous at-
tempts to reach Bose-Einstein condensation in cesium. A
microwave frequency ramp may be implemented to force
the evaporation cooling. Our simulation shows that al-
though the evaporation is only one-dimensional, it is pos-
sible to reach a PSD of 0.1 within a time less than 10 s. We
didn’t push further the calculation because of the physical
limitation of our model. This is made possible by the use
of large cross-section. At this point it has been demon-
strated both theoretically [18] and experimentally [1] that
three-body collision could become important and prevent
to reach the BEC transition. The way to overcome this
problem is to lower the magnetic field to in order to reach
lower values of the cross-section thus strongly reducing the
three-body collision rate [1].

Using a classical collisional model, we have performed
numerical simulations of 1D forced evaporative cooling in-
duced by microwave transitions to an untrapped hyperfine
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substate. We have shown numerically that the conditions
for reaching a phase space density close to unity using the
evaporative cooling procedure are experimentally realistic.
Furthermore, the possibility of varying the Cs–Cs scatter-
ing length using a supplementary homogeneous magnetic
field allows the experimental study of a BEC with tun-
able interactions. In our set-up, the existence of a mag-
netic gradient implies also a space dependence of the scat-
tering length. However, this variation remains low at the
cloud position since the magnetic gradient is only about
3 G/mm. Tunable interactions are of particular interest
in the context of the formation of a molecular conden-
sate since the use of a Feshbach resonance appears to be
a promising way to transform efficiently a sample of cold
atoms into a sample of cold diatomic molecules [19].

This work is supported by “Action Concertée Incitative Pho-
tonique” of the French research Ministry. The people in-
volved in this work are members of the European Net-
work “Cold Molecules” n◦ HPRN-CT-2002-00290. The authors
thank Daniel Comparat for fruitful discussion and Duncan
Tate for a critical reading of this manuscript.

Appendix A: Calculation of the parameters
of the potential Vvert(z)

The Biot-Savart formula in a static regime gives, for the
magnetic field

−→
B1 created by two infinite wires along the

y-direction carrying an opposite current It and separated
by a distance 2d, the following expressions

B1z(x, z) =
µ0It

2π

(
d − x

(d − x)2 + z2
+

d + x

(d + x)2 + z2

)

B1x(x, z) =
µ0It

2π

(
z

(d − x)2 + z2
− z

(d + x)2 + z2

)
.

(A.1)

To get a minimum for the potential Vvert(z) at z = zt > 0
(a minimum at z = 0 is not desirable in an experiment
because of laser beam shading by the wires), the two fol-
lowing conditions have to be satisfied:

B0 < −B1z(0, zt) i.e. B0 + Bw
1

1 + z2
t /d2

< 0 (A.2)

zt > d/
√

3. (A.3)

Under these conditions, and using equation (2), we can
calculate the zt value where the potential Vvert(z) =
VB (0, z) + Vg (z) is minimal, and we obtain:

Bw =
−mgd

gF µBmF

(1 + z2
t /d2)2

2zt/d
, (A.4)

which defines Bw(zt).
To realize an adequate total field at zt, B = B(0, zt) =

B1z(0, zt) + B0 such as |B| > 18 G, B0 has to be chosen

so that:

B0 < −18 − Bw
1

1 + z2
t /d2

= −18 − −mgd

gF µBmF

1 + z2
t /d2

2zt/d
, (A.5)

which gives in the case of our experiment, for zt = 15 mm
(Bw = 97.2 G), B0 < −58 G.

To find the expression for the depth of the potential
Vvert(z), one has to determine the expression of its max-
imum zmax. Indeed, in the range 0 − zt, Vvert(z) has a
maximum for z = zmax as shown in Figure 2c. It is easy
to show that, because zmax is close to zero, zmax is ap-
proximately found to be:

zmax ∼ d

2

( −mgd

gF µBmF

)
/Bw = d

zt/d

(1 + z2
t /d2)2

. (A.6)

This value is only obtained for high |B0| field, satisfying
B0 � −Bw/(1 + z2

max/d2). In that case, the depth of the
potential given by:

∆V (zt) = −gF µBmF Bw

(
1

1 + z2
max/d2

− 1
1 + z2

t /d2

)
+ mg(zmax − zt) (A.7)

which does not depends on B0.
For B0 � −Bw/(1 + z2

max/d2), the potential has its
maximum for the zero field value at:

zzero = d

√
Bw

−B0
− 1 (A.8)

and the depth of potential:

∆V (zt, B0) = gF µBmF

(
B0 + Bw

1
1 + z2

t /d2

)
+ mg(zzero − zt) (A.9)

depends on B0.
For 2d = 25 mm, zt = 15 mm, zmax is found to be

∼ 2.52 mm, and for B0 < −93.4 G, ∆V = kB729 µK
whereas for B0 ranging from −93.4 to −58 G, ∆V varies
from kB729 µK to kB169 µK.

In the vicinity of the minimum, the potential is well ap-
proximated by a harmonic potential Vvert(z) ≈ Vvert(zt)+
mω2

t (z − zt)2/2 and is characterized by the frequency
νt = ωt/2π:

νt =
1
2π

√
g

d

√
3z2

t /d2 − 1
(zt/d)(z2

t /d2 + 1)
. (A.10)
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